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We reformulate several recent analyses of infection processes on highly heterogeneous networks(e.g.,
scale-free networks) which conclude that diseases will spread and persist even for vanishingly small transmis-
sion probabilities. The results of these latter studies contrast with conventional epidemiological models where
there are clear threshold effects, namely, should the transmission probability fall below a critical threshold level
the disease is expected to die out. Here we show that epidemic propagation depends equally on the infection
scheme as well as the network structure. Connectivity-dependent infection schemes can yield threshold effects
even in scale-free networks where they would otherwise be unexpected.
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The notion of thresholds forms a central part of classical
and current epidemiological theory and carries important im-
plications for disease eradication and vaccination programs.
Recent modeling studies[1–5] demonstrate that social and
spatial structures governing the connectivity of individuals in
networks have major control over the spread of infections
and the emergence of intrinsic disease thresholds. For ex-
ample, these thresholds are believed to be absent in scale-
free networks where vanishingly small infection probabilities
suffice for a disease to spread and perpetuate. To date most
of the effort has focused on studying the effects of network
architecture, paying little attention to disease transmission.
Here we show that transmission mechanisms are decisive
factors in determining epidemic thresholds. This has impli-
cations not just for human populations, but also for applica-
tions such as the spreading of computer viruses across the
internet.

When modeling epidemics, it is convenient to formulate
the population in terms of its underlying graph structure with
nodes representing individuals, and potential contacts or con-
nections between pairs of individuals as edges of the net-
work. The connectivity of the graph naturally controls to a
great degree the spread of an infection through a network. It
is well understood that for a large and completely random
graph, there is a threshold level of connectivity[6]. Below
the threshold, individuals are essentially disconnected from
one another all direct and indirect pathways being consid-
ered. However, for a critical number of edges the graph
forms a “giant component” whereby nearly all individuals
are connected to one another. One of the goals in this paper
is to distinguish between this threshold effect due to the giant
component, and other thresholds that are usually overlooked
and are due to the intrinsic dynamics of the disease itself.

We use the simplestSIS model to explore the disease
dynamics on a network. In this model, individuals are either
in a SusceptiblesSd state or an InfectedsId state. Letl be the
rate at which a susceptible individual changes fromS to I
upon contact with a single infected individual. The parameter
d is taken to be representative of the recovery rate of an
individual from the infected state, and thus its return to the
susceptible state.

Models of this type demonstrate clear infection threshold
effects on random and small-world networks[2,3] both of
which are characterized by their relatively homogeneous net-

work connectivity(i.e., with all nodes having approximately
an equal numberk of connections). In the presence of a
threshold, disease eradication requires reducing the infection
rate below a critical levell=lc where a stable infection-free
equilibrium is guaranteed. In epidemiological terminology,
the infection threshold may be expressed in terms of the
basic reproductive numberR0, the average number of infec-
tions produced by a single infected individual in a population
of susceptibles. Crossing the threshold reduces the basic re-
productive numberR0 below unity and the infection is pre-
vented from propagating. In practice, the same result can be
achieved by random immunization of a proportion of the
population[5], since it reduces the effectiveR0.

It is important to realize that the above results are for
homogeneous network structures such as random and small
world topologies, where the number of connections per node
changes little over the whole graph. However, this formula-
tion needs modification for heterogeneous networks where
the number of connections per node is highly variant. May
and Anderson[1,4,5] have shown that heterogeneity in net-
work structure acts to increase the effectiveR0 as follows:

R0 = R̂0f1 + CVskd2g. s1d

Here R̂0 is the basic reproductive rate obtained for a homo-

geneous network having the average connectivityk̂=kkl and
CVskd is the coefficient of variation of the heterogeneous
network. That is,CVskd is a measure of the variability in the
number of edgesk at each node over the entire graph. Con-
sequently, an increase inCVskd could raise the basic repro-
ductive number above the threshold levelR0=1, increasing
the probability of an epidemic outbreak.

Epidemic threshold dependence upon heterogeneity in
connectivity introduces an analogy to percolation thresholds.
It is known that highly heterogeneous networks are ex-
tremely resilient and even for high level of dilution(for ex-
ample through vaccination), nodes are still connected in a
giant component[7]. In particular, if the network has an
infinite CVskd, then the giant component is always present for
every level of dilution. According to Eq.(1), on these net-
works R0.1 and there is always a chance of an epidemic
outbreak.

Scale-free networks exemplify this point well. These
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networks are extremely heterogeneous with some individuals
being highly connected, but the great majority having only
few connections. The probability of a node having exactlyk
connections is given by the power-law distributionpk,k−g.
When gø3 the variance (and CVskd) of the node-
connectivity approaches infinity for a large number of nodes
sNd. In this regime, all nodes are connected in a giant com-
ponent where there are a vast number of pathways by which
an infection can propagate or percolate through the network.
Thus, it is assumed that on these networks the lack of a
percolation threshold is the reason for the absence of an in-
fection threshold. In practical terms this would make random
vaccination ineffective. But although it is obvious that on a
disjoint network an infection will not propagate, we show
that surprisingly, it is not necessarily true that in the perco-
lative phase a disease will spread.

We claim that the analogy between infection and percola-
tion threshold holds for a limited range of cases only. In all
studies until now where this analogy has been made, it was
supposed that the infection ratel is constant for all individu-
als. Doing so implies two assumptions. The first is that the
infection rate of a node is independent of the number of
connections it has(i.e., connectivity independent), and the
second is that infection rate is symmetrical. By symmetrical
we are referring to the assumption that the transmission
probability between a highly connected infected individual to
its poorly connected susceptible neighbor is equal to the
transmission probability in the converse situation, where the
poorly connected individual is the infected and the highly
connected neighbor is the susceptible. In our opinion, these
assumptions are too restrictive and fall short when trying to
describe the vast spectrum of disease propagation strategies.
Introducing a connectivity correlated transmission ratelskd
enables us to relax these assumptions and to broaden the
scope of theSIS model. However, oncel is connectivity
dependent, Eq.(1) no longer holds in its present form, and
we explore the consequences below.

Mean field models have been described for analyzing het-
erogeneous graphs having arbitrary node distribution. LetIk
be the density of infective nodes within the class of nodes
having exactlyk connections. Hence the mean-field approxi-
mation for the general infection scheme takes the following
form [1,3,8]:

İ k = l̃skdks1 − IkdQ − dIk. s2d

The first term on the right-hand side of Eq.(2) represents the
assumption that the average density of newly infected nodes

İ k is proportional to the density of susceptible nodes from
classk (i.e., 1−Ik), the number of edgesskd emanating from
each one of those nodes, the rate at which an infection is

admitted through an edgesl̃skdd, and the probability that a
given edge is connected to an infected node and can transmit
the infectionsQd. The second term represents the infected
nodes recovery rated (or dilution rate in the language of
percolation theory). Since we are free to scale time, without
loss of generality we can setd=1.

By taking l̃skd, it becomes possible to model diseases
which have a connectivity correlated(i.e., k-dependent) in-

fection rate. One can interpret the correlated infection rate in

the context of edge percolation asl̃skd=lAskd, whereAskd is
the probability that a susceptible node would actually admit
an infection through an edge connected to an infected node.
If so, it is assumed that the infection is transmitted at ratel
and the edge is referred to as occupied. Thus each suscep-
tible from classk has on averagekAskd occupied edges from
which it could be infected. Following the same interpreta-
tion, an infective node has on averagekTskd occupied edges
from which it can transmit the disease. Thus the probability
Q is approximated as the proportion of infective occupied
edges over the entire network[9]:

Q =
1

kklok=1

n

kTskdpkIk s3d

wherepk is the probability that a node has exactlyk connec-
tions andn is the largest degree of any node in the network.

It is easy to see that system 2 always has an infection free
steady statesIk

* =0d. The system may also have a positive
steady state withIk

* .0 which will be referred to here as the
endemic steady state. It was analytically shown[8,9], that a
constant infection ratelskd=l on a scale free network with
only a percolative phase always generates a positive steady
state. It was also assumed that on those networks the infec-
tion would always prevail implying that the existence of an
endemic steady state also implies its stability. However to
our knowledge, no formal proof has ever been given. Our
aim is to find conditions onAskd andTskd for the emergence
of a threshold levellc on those networks. In doing so we
also present a rigorous stability analysis.

We find it more convenient to present system 2 in matrix
form:

İ = F l

kkl
sK̂A · s1 − I dd ^ sK̂T ·pd − 1̂G · I , s4d

whereI , p, and1 are the vectorshIkj1
n, hpkj1

n andh1j1
n, respec-

tively. K̂x aren on n matrices which obeyki,i = ixsid andki,j

=0 for everyi Þ j . 1̂ is then on n unity matrix.
Perturbing the steady stateI * so that I std= I * +estd and

omitting higher powers ofestd gives the stability matrix in
the vicinity of the steady state:

e = fBsI*d − lQ*K̂ag · e, s5d

where

BsId =
l

kkl
fK̂A · s1 − I dg ^ fK̂T ·pg − 1̂. s6d

The eigenvaluessmnd of B may be determined from the char-

acteristic equationuBsI*d−m1̂u=0 which is equivalent to:

0 = s− m − 1dn−1S− m − 1 +
l

kklok

k2AskdTskds1 − Ik
*dpkD .

s7d

From the fact that at the endemic steady stateQ* .0,
it follows that a nonpositive leading eigenvaluesmmaxd
of BsI*d is a sufficient condition for the stability of the
endemic steady state(Eq. (5)). Introducing the equality
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kAskds1−Ikn
*d= I* /lQ* (Eq. (2)) into Eq.(7) we find that the

leading root ismmax=0, and we can deduce that if a positive
steady state exists(i.e., Q* .0) it must be stable.

The existence of the positive steady state is established by
following the same argument as was introduced by Pastor-
Satorraset al. [9] for the uncorrelated infection ratelskd
=l. Note that from Eq.(2) the nonzero steady state must
satisfy: Ik

* =lAskdkQ* / s1+lAskdkQ*d. This imposes a self-
consistency expression onQ* as expressed in Eq.(3), and
yields a necessary and sufficient condition for the existence
of a positive steady state, namelyQ* .0, or:

l

kklok

AskdTskdk2pk . 1. s8d

On the other hand in the vicinity of the infection free
steady stateQ* =0 and a negative leading eigenvaluesmmaxd
of BsI*d is imperative for its stability(Eq. (5)). Setting I*

=0 in Eq. (7) gives rise to the leading eigenvalue:

mmax=
l

kklok

AskdTskdk2pk − 1. s9d

By defining the effective basic reproductive number as

R0 =
l

kklok

AskdTskdk2pk s10d

we see that the infection free steady state is stable if and only
if R0,1. Note that this condition is the converse from the
condition establishing the existence(and hence the stability)
of the positive steady state. ThusR0 as expressed in Eq.(10)
indeed serves as the bifurcation point distinguishing the en-
demic from the infection free steady state.

One can render Eq.(10) in a way that resembles the ex-
pression forR0 as introduced in Eq.(1):

R0 = R̂0F1 +
covskA,kTd

kkAlkkTl G . s11d

whereR̂0 is the basic reproductive rate obtained for a random
uncorrelated homogeneous network having the average ef-
fective connectivitykkAlkkTl / kkl. It is easy to see that for
Askd=1 andTskd=1 we retrieve May’s formula Eq.(1), for
the effectiveR0, and the infection free steady state for an
infinite scale free network(i.e., CVskd→` ) is never stable.

We now illustrate the profound effect correlated infection
rates bear upon the emergence of the infection threshold by
way of three simple examples.

(1) In the first example, we setAskd=1 and Tskd=1/k
implying that the potential transmission rate is connectivity
correlated. In contrast a susceptible’s potential admission
rate is independent of its degree of connectivity. This ex-
ample would have relevance for macroparasite propagation
where infected host individuals have a limited pathogen res-
ervoir and thus transmissibility must be limited within the
infection period. In such a case, the more the host’s contacts
skd the less would be the chance of transmission per contact.
An infection rate that reduces with connectivityk is much

more appropriate.
Substituting the above to Eq.(10) yields R0

=sl / kkldok AskdTskdk2pk=l and lc=1 as the infection
threshold level. This scheme gives birth to an infection
threshold regardless of the network’s connectivity distribu-
tion spkd. Thus reducingl below unity would prevent patho-
gen propagation even when applied to a scale free network.
Note that this contrasts with the usual understanding of epi-
demic dynamics on scale free networks where it is believed
that there is never an infection threshold and random vacci-
nation could never prevent disease propagation.

We note that Newman[10] also studied “the physically
plausible case in which the transmissibility T depends in-
versely on the degree of the infective individual:Tk=1/k.”
He showed that with this transmission scheme disease cannot
spread on networks regardless of their degree distribution
spkd. This would seem to be in contradiction to our own
results outlined above. The discrepancy arises from the dif-
ferent schemes for scaling transmissibility. While we directly
scaled the exact transmission rate by a factor 1/k, Newman
scales a specially derived “transmission probability”Tk.
These two quantities are not equivalent and can yield differ-
ent conclusions.

(2) The independency of infection dynamics on connec-
tivity distribution becomes even more transparent when con-
sidering the reciprocal infection scheme whereAskd=1/k
andTskd=1 (see Fig. 1). Although, as Eq.(10) makes clear,
the ultimate outcome will be similar to the example above,
nevertheless it allows us to give an alternative complemen-
tary and intuitive analysis. The scheme expresses asymmetri-
cal infection rates where an infected node can transmit the
infection from all of its edges with the same rate, while a

FIG. 1. Infective density steady stateI* vs infection ratel, for
different scaling schemese=0 (kites), e=0.5 (open circles), e=1
(closed circles) where Askd=k−e, Tskd=1 and d=0.5. Numerical
simulations were implemented on an Albert-Barabasi scale-free net-
work [12] with g=3, N=106 nodes. Each point is the average of 5
simulations run with parallel updating until convergence to equilib-
rium. Each run began withI0=104 initial infectives randomly
placed on a uniquely realized network. Thresholds are slightly
shifted to the right from the expected values( lc=0.5 whene=1)
due to a distribution cutoff effect on a finite size network.
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susceptible admits the infection at a rate which is inversely
correlated to its connectivity. This reflects the infection dy-
namics of some sexually transmitted diseases. For example,
the WHO reported that 55% of HIV adult infections in Africa
are in women[11]. A bipartite network would thus be a suit-
able framework for modeling HIV propagation in Africa.
Since females and males differ greatly in their susceptibility
to HIV [11], a projection of the bipartite network onto the
male population would be more tangible for mathematical
investigation. In this example nodes from typea (males) in-
fect nodes from typeb (females) very efficiently. On the
other hand the infection is less efficient when transmitted
from females(typeb) toward males(typea) who can receive
the disease only after a sustained close interaction. Thus if a
susceptible node from typea is a member of a highly con-
nected class, the efficiency of each one of its interactions
with an infectedb type node is reduced.

IntroducingAskd=1/k andTskd=1 into Eq.(2) engenders
the k-dependent infection rate to counteract connectivity so
that the force of infectionskQlskdd does not vary between
connectivity classes. Thus for each connectivity class the
number of infected nodes are determined solely by the initial
conditions. Moreover for approximately homogeneous initial
conditions we getIk< I for everyk andQ= I, which renders
Eq. (12) to the knownSISmodel on random networks

İ k = ls1 − IkdIk − Ik. s12d

A simple stability analysis shows that the model hasR0=l
an infection threshold atlc=1. Hence this alternative analy-
sis shows the presence of an infection threshold regardless of
the network’s connectivity distributionssee Fig. 1 where
e=1d.

(3) We now return to the general case given by Eq.(10).
It follows that a necessary and sufficient condition for the
existence of a threshold on an infinite network is the conver-
gence of the sumok AskdTskdk2pk. An equivalent mathemati-
cal condition, but a weaker one from an epidemiological
point of view, would be that the summation tail on

[k̂,`)approaches zero for large enoughk̂. Thus for threshold
emergence it is imperative thatAskdTskdpk,k−s3+ed for every

k. k̂ ande.0.
Applying this condition on a scale free network with a

connectivity distribution ofpk,k−3 suggests that the infec-

tion rate for the high connectivity classes(say for every

k. k̂) must scale as:

AskdTskd , k−e. s13d

The condition is sufficient for having an infection threshold
even though the network itself possesses no percolation

threshold. Since we are free to choosek̂ and e the scaling
effect is small in the majority of connectivity classes, yield-
ing an epidemiologically reasonable scenario with almost no
effect on infection rates but with an imprint on immunization
strategies decisions.

Our results also have relevance to the field of computer
network security. One could think of the following plausible
scenario: the spread of an infected file in a peer to peer
network(for example: in a file sharing network like Kazza).
Since every peer(node) has a finite upload rate, the larger his
connectivity the slower each one of his neighbors would be
able to download. In reality, the probability a node would
complete a download from a specific source is inversely
correlated to the download rate. This yields a connectivity
correlated transmission scheme with a probability of
Tskd=ks−ed, which needs to be taken into account via the
methodology we have set out above.

For scale-free networks, when the infection probability is
not k dependent, it has been proved that a connectivity de-
pendent vaccination policy is the only strategy for disease
eradication. For implementation it is imperative that the so-
cial connectivity pattern of each individual is determined
prior to inoculation. This is usually highly impractical espe-
cially in cases of unexpected epidemic outbreaks(i.e., bio-
terrorism, computer viruses). On the other hand, if based on
detailed knowledge of the infection, a scaling effect is noted
and a threshold emerges, random vaccination might prove
sufficiently efficient.

The threshold phenomenon described here, which stems
from alternative transmission schemes, demonstrates that
epidemic propagation depends equally on the infection
scheme as well as the network structure. Proper formulation
of optimal vaccination campaigns requires taking both of
these important factors into account.

We thank Dai HaiHe, Dana Torok, and Naama Dror for
helpful discussions. We are grateful to the James S. McDon-
nell Foundation for their support.

[1] R. M. May and A. L. Lloyd, Phys. Rev. E64, 066112(2001).
[2] C. Moore and M. E. J. Newman, Phys. Rev. E62, 7059

(2000).
[3] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E63,

066117(2001).
[4] R. M. May and R. M. Anderson, Math. Biosci.72, 83 (1984).
[5] R. M. Anderson and R. M. May,Infectious Diseases of

Humans: Dynamics and Control(Oxford University Press,
New York, 1991).

[6] D. Stauffer and A. Aharony,Introduction to Percolation
Theory, 2nd ed.(Taylor & Francis, London, 1991).

[7] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
Lett. 86, 3200(2001).

[8] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett.86,
3200 (2001).

[9] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E65,
036104(2002).

[10] M. E. J. Newman, Phys. Rev. E66, 016128(2002).
[11] World Health Organization. http://www.who.int/mediacentre/

factsheets/fs242/en/(2003).
[12] A. L. Barabasi and R. Albert, Science286, 509 (1999).

R. OLINKY AND L. STONE PHYSICAL REVIEW E70, 030902(R) (2004)

RAPID COMMUNICATIONS

030902-4


