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We reformulate several recent analyses of infection processes on highly heterogeneous n@hgarks
scale-free networkswvhich conclude that diseases will spread and persist even for vanishingly small transmis-
sion probabilities. The results of these latter studies contrast with conventional epidemiological models where
there are clear threshold effects, namely, should the transmission probability fall below a critical threshold level
the disease is expected to die out. Here we show that epidemic propagation depends equally on the infection
scheme as well as the network structure. Connectivity-dependent infection schemes can yield threshold effects
even in scale-free networks where they would otherwise be unexpected.

DOI: 10.1103/PhysRevE.70.030902 PACS nun)er87.23.Cc, 89.75-k

The notion of thresholds forms a central part of classicalwork connectivity(i.e., with all nodes having approximately
and current epidemiological theory and carries important iman equal numbek of connections In the presence of a
plications for disease eradication and vaccination programshreshold, disease eradication requires reducing the infection
Recent modeling studigld—-5 demonstrate that social and rate below a critical level =\, where a stable infection-free
spatial structures governing the connectivity of individuals inequilibrium is guaranteed. In epidemiological terminology,
networks have major control over the spread of infectionghe infection threshold may be expressed in terms of the
and the emergence of intrinsic disease thresholds. For e¥sasic reproductive numbd,, the average number of infec-
ample, these thresholds are believed to be absent in scalgsns produced by a single infected individual in a population
free networks where vanishingly small infection probabilities ¢ susceptibles. Crossing the threshold reduces the basic re-
suffice for a disease to spread and perpetuate. To date m ductive numbeR, below unity and the infection is pre-

of th_e effort has focus_:ed on stu_dylng th_e effects of NEWork ented from propagating. In practice, the same result can be
architecture, paying little attention to disease transmission

Here we show that transmission mechanisms are decisiv%gh'el\gta.gnb%’ resl%dc(()amt 'rrgg“égze:ﬁgnefgc? proportion of the
factors in determining epidemic thresholds. This has impli-°°P4 3! [5], since it redu I\FRy.

cations not just for human populations, but also for applica- It is important to realize that the above results are for
. ; hwmogeneous network structures such as random and small

internet. world topologies, where the number of connections per node
When modeling epidemics, it is convenient to formulatechanges little over the whole graph. However, this formula-
the population in terms of its underlying graph structure withtion needs modification for heterogeneous networks where
nodes representing individuals, and potential contacts or cobe number of connections per node is highly variant. May
nections between pairs of individuals as edges of the ne@nd Andersori1,4,5 have shown that heterogeneity in net-
work. The connectivity of the graph naturally controls to aWork structure acts to increase the effectiReas follows:
great degree the spread of an infection through a network. It -
is well understood that for a large and completely random Ro=Ro[1 +Cy(k)?]. (1)

graph, there is a threshold level of connectiVi6}. Below R . . . i
the threshold, individuals are essentially disconnected frorr'f'ereRO Is the basic reproductive rate obtained for a homo

one another all direct and indirect pathways being considgeneous network having the average connectivityk) and
ered. However, for a critical number of edges the grapHov(K) is the coefficient of variation of the heterogeneous
forms a “giant component” whereby nearly all individuals network. That isCy(k) is a measure of the variability in the
are connected to one another. One of the goals in this papsumber of edge& at each node over the entire graph. Con-
is to distinguish between this threshold effect due to the giangsequently, an increase (k) could raise the basic repro-
component, and other thresholds that are usually overlookeductive number above the threshold le®y=1, increasing
and are due to the intrinsic dynamics of the disease itself. the probability of an epidemic outbreak.

We use the simplesBIS model to explore the disease  Epidemic threshold dependence upon heterogeneity in
dynamics on a network. In this model, individuals are eitherconnectivity introduces an analogy to percolation thresholds.
in a Susceptibl€S) state or an Infectefl) state. Let\ be the It is known that highly heterogeneous networks are ex-
rate at which a susceptible individual changes frBrto | tremely resilient and even for high level of dilutigfor ex-
upon contact with a single infected individual. The parameteample through vaccinationnodes are still connected in a
J is taken to be representative of the recovery rate of agiant componen{7]. In particular, if the network has an
individual from the infected state, and thus its return to theinfinite C/(k), then the giant component is always present for
susceptible state. every level of dilution. According to Eq.l), on these net-

Models of this type demonstrate clear infection thresholdworks Ry>1 and there is always a chance of an epidemic
effects on random and small-world networks 3] both of  outbreak.
which are characterized by their relatively homogeneous net- Scale-free networks exemplify this point well. These
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networks are extremely heterogeneous with some individualection rate. One can interpret the correlated infection rate in

being highly connected, but the great majority having onlythe context of edge percolation &) =NA(k), whereA(K) is

few connections. The probability of a node having exaktly the probability that a susceptible node would actually admit
connections is given by the power-law distributipg~k™. g jnfection through an edge connected to an infected node.
When y=<3 the variance (and C(k)) of the node- |fgq jtis assumed that the infection is transmitted at Kate
connectivity approaches infinity for a large number of nodesang the edge is referred to as occupied. Thus each suscep-
(N). In this regime, all nodes are connected in a giant comtjpje from classk has on averageA(k) occupied edges from
ponent where there are a vast number of pathways by whiclyhich it could be infected. Following the same interpreta-
an infection can propagate or percolate through the networkijon  an infective node has on averaggk) occupied edges
Thus, it is assumed that on these networks the lack of &om which it can transmit the disease. Thus the probability

percolation threshold is the reason for the absence of an iny s approximated as the proportion of infective occupied
fection threshold. In practical terms this would make randonggges over the entire netwof8y:
n

vaccination ineffective. But although it is obvious that on a 1
disjoint network an infection will not propagate, we show 0 =-—> kT(Kplx 3
that surprisingly, it is not necessarily true that in the perco- (K=

Iatl\\//\(/aelocklfisl:r(]a t?w:tlir?: Saenc\':t\lncl)l Spl;ee?vséen infection and percolay. herepy is the probability that a node has exadkgonnec-
tion threshold holds for a Igi;n):ited range of cases onIp In aIItions andn is the largest degree of any node in the network.

; : . 9 v It is easy to see that system 2 always has an infection free
studies until now where this analogy has been made, it wag,

. . . L eady statdl, =0). The system may also have a positive
supposed that the infection ratés constant for all individu steady state with, >0 which will be referred to here as the

als. Doing so implies two assumptions. The first is that the . )

infection rate of a node is independent of the number o]endemlc §tead_y state. It Vl'as analytically shq@], that a
constant infection rat&(k)=\ on a scale free network with

: |only a percolative phase always generates a positive steady

we are referring to the assumption that the transmissio tate. It was also assumed that on those networks the infec-

probability between a highly connected infected individual totion WO.UId always prevail 'm.p'y”f‘g that the existence of an
its poorly connected susceptible neighbor is equal to th(gndemlc steady state also implies its stability. quever to
transmission probability in the converse situation, where th@Y" !<nowl'edge, nqlformal proof has ever been given. Our
poorly connected individual is the infected and the highly@M iS to find conditions oi(k) andT(k) for the emergence
connected neighbor is the susceptible. In our opinion, thesgl & threshold leveh. on those networks. In doing so we
assumptions are too restrictive and fall short when trying tg2/SC Present a rigorous stability analysis. _ _
describe the vast spectrum of disease propagation strategies, Ve find it more convenient to present system 2 in matrix
Introducing a connectivity correlated transmission ratk) N
enables us to relax these assumptions and to broaden the l=| —
scope of theSIS model. However, once is connectivity K
dependent, Eqi1) no longer holds in its present form, and wherel, p, and1 are the vector§l }", {pd? and{1}", respec-
we explore the consequences below. _ - . . o

Mean field models have been described for analyzing hetiVe!Y: Kx aren on n matrices which obex;=ix(i) andk;
erogeneous graphs having arbitrary node distribution.ILet =0 for everyi #j. 1is then on n unity matrix.
be the density of infective nodes within the class of nodes Perturbing the steady staté so thatl(t)=1"+e(t) and
having exactlyk connections. Hence the mean-field approxi-omitting higher powers ok(t) gives the stability matrix in
mation for the general infection scheme takes the followingthe vicinity of the steady state:

(Ka-(1-1) ® (Ky-p) =11, (4)

form[138 e=[B(I") - \O'K,] €, (5)
Ik:)\(k)k(l_lk)_élk (2) where

The first term on the right-hand side of K@) represents the B(l) = A[RA -(1-D]®[Kr-p]-1. (6)

assumption that the average density of newly infected nodes (k)

Iy is proportional to the density of susceptible nodes fromThe eigenvalueéu,,) of B may be determined from the char-
classk (i.e., 1), the number of edget) emanating from acteristic equatiofB(1”)—u1/=0 which is equivalent to:
each one of those nodes, the rate at which an infection is
admitted through an edge(k)), and the probability that a
given edge is connected to an infected node and can transmit
the infection(®). The second term represents the infected
nodes recovery raté (or dilution rate in the language of (7
percolation theory Since we are free to scale time, without  From the fact that at the endemic steady st@fe>0,
loss of generality we can sét 1. it follows that a nonpositive leading eigenvalugm,a,)
By taking \(K), it becomes possible to model diseasesof B(l") is a sufficient condition for the stability of the
which have a connectivity correlatdde., k-dependentin-  endemic steady statéEqg. (5)). Introducing the equality

0=(-p- 1)”_1(— u—1+ LE AR T(K)(1 - |f<)pk> :
(L
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KAKK)(1-1,n")=1"/A®" (Eq.(2)) into Eq.(7) we find that the 0.8

leading root isuna=0, and we can deduce that if a positive

steady state exis{s.e., ® >0) it must be stable. £=0
The existence of the positive steady state is established t*~ 0.6 e=0.5

following the same argument as was introduced by Pastoi2

Satorraset al. [9] for the uncorrelated infection rate(k) %
=\. Note that from Eq.(2) the nonzero steady state must 2 0.4
satisfy: 1, =NAKk®" /(1 + A(k)k®"). This imposes a self- ¢
consistency expression dd* as expressed in E¢3), and g e=1
. . . . D
yields a necessary and sufficient condition for the existenc'g 0.2
of a positive steady state, namedy >0, or: |
A 2
—> A T(KKp> 1. €) 0 -

(k) %

On the other hand in the vicinity of the infection free
steady stat®” =0 and a negative leading eigenvalyig,.,)
of B(I") is imperative for its stability Eq. (5)). Setting!”
=0 in Eq.(7) gives rise to the leading eigenvalue:

0 0.2 0.4 0.6 0.8 1

Infection rate A

FIG. 1. Infective density steady stafevs infection ratex, for
different scaling schemes=0 (kites), e=0.5 (open circleg e=1
(closed circles where A(k)=k™¢, T(k)=1 and 6=0.5. Numerical

A simulations were implemented on an Albert-Barabasi scale-free net-
Umax= — 2 A T(K)K?p, - 1. (9)  work [12] with y=3, N=1C° nodes. Each point is the average of 5

L simulations run with parallel updating until convergence to equilib-
rium. Each run began withy=10" initial infectives randomly
placed on a uniquely realized network. Thresholds are slightly
A shifted to the right from the expected valugk.=0.5 whene=1)
—2 A(k)T(k)kzpk (10) due to a distribution cutoff effect on a finite size network.

K% .
more appropriate.
we see that the infection free steady state is stable if and only Substituting the above to Eq.(10) vyields R,
if Ry<<1. Note that this condition is the converse from the=(\/(k))=, A(K)T(k)k’p,=\ and A\,=1 as the infection
condition establishing the existentnd hence the stability threshold level. This scheme gives birth to an infection
of the positive steady state. ThRg as expressed in EGL0)  threshold regardless of the network’s connectivity distribu-
indeed serves as the bifurcation pOint dlStIﬂgUlShlng the €Nton (pk) Thus reducing\ below unity would prevent patho_

By defining the effective basic reproductive number as

RO:

demic from the infection free steady state. gen propagation even when applied to a scale free network.
One can render Eq10) in a way that resembles the ex- Note that this contrasts with the usual understanding of epi-
pression forR, as introduced in Eq.l): demic dynamics on scale free networks where it is believed
. cov(kA KT) that there is never an infection threshold and random vacci-
Ro= Ro{l + —] ) (11) nation could never prevent disease propagation.
(kAYKT) We note that Newmaifl0] also studied “the physically

- plausible case in which the transmissibility T depends in-
whereR; is the basic reproductive rate obtained for a randomyersely on the degree of the infective individu@l=1/k.”
uncorrelated homogeneous network having the average efie showed that with this transmission scheme disease cannot
fective connectivity(kAXKT)/(K). It is easy to see that for spread on networks regardless of their degree distribution
A(k)=1 andT(k)=1 we retrieve May's formula Eq1), for  (p,). This would seem to be in contradiction to our own
the effectiveR,, and the infection free steady state for anresults outlined above. The discrepancy arises from the dif-
infinite scale free networki.e., C\(k) — ) is never stable.  ferent schemes for scaling transmissibility. While we directly

We now illustrate the profound effect correlated infectionscaled the exact transmission rate by a factdg, Newman
rates bear upon the emergence of the infection threshold bscales a specially derived “transmission probabiliff;.
way of three simple examples. These two quantities are not equivalent and can yield differ-

(1) In the first example, we seA(k)=1 andT(k)=1/k  ent conclusions.
implying that the potential transmission rate is connectivity (2) The independency of infection dynamics on connec-
correlated. In contrast a susceptible’s potential admissiotivity distribution becomes even more transparent when con-
rate is independent of its degree of connectivity. This exsidering the reciprocal infection scheme whek&)=1/k
ample would have relevance for macroparasite propagatioand T(k)=1 (see Fig. 1 Although, as Eq(10) makes clear,
where infected host individuals have a limited pathogen resthe ultimate outcome will be similar to the example above,
ervoir and thus transmissibility must be limited within the nevertheless it allows us to give an alternative complemen-
infection period. In such a case, the more the host’s contactgry and intuitive analysis. The scheme expresses asymmetri-
(k) the less would be the chance of transmission per contactal infection rates where an infected node can transmit the
An infection rate that reduces with connectivityis much infection from all of its edges with the same rate, while a
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susceptible admits the infection at a rate which is inverselyion rate for the high connectivity classésay for every
correlated to its connectivity. This reflects the infection dy-k> k) must scale as:

namics of some sexually transmitted diseases. For example,

the WHO reported that 55% of HIV adult infections in Africa AR T(K) <Kk 13

are in womer(11]. A bipartite network would thus be a suit- The condition is sufficient for having an infection threshold

able framework for modeling HIV propagation in Africa. eyen though the network itself possesses no percolation
Since females and males differ greatly in their susceptibility

to HIV [11], a projection of the bipartite network onto the threshold. Since we are free to chodsand e the scaling

male population would be more tangible for mathematicalﬁqﬁe;tn'z Sir(;]:rltlnlcr)]l;hﬁ:emajfégggzﬁgnsec((:ata/:r)i/oc\lla?ﬁeaslhﬂidr;o
investigation. In this example nodes from typémalesg in- 9 P gically

fect nodes from types (females very efficiently. On the effect on infection rates but with an imprint on immunization

other hand the infection is less efficient when transmitteaStr"’Itegles decisions. )
from femalesitypeb) toward malestypea) who can receive Our results_also have relev_ance to the flelql of computer
the disease only after a sustained close interaction. Thus if laetwork security. One could think of the following plausible

suscepibe node rom type1s & member of a gny con. ~CeTAC: e shead of an fectd fle i pee lo peer
nected class, the efficiency of each one of its interaction ( ple: 9 2

with an infectedb type node is reduced ince every pedinode has a finite upload rate, the larger his

IntroducingA(k) = 1/k andT(k)=1 into Eq.(2) engenders connectivity the slower each one of his neighbors would be

the k-dependent infection rate to counteract connectivity soable to download. In reality, the probability a node would

. : complete a download from a specific source is inversely
that thet_fgrcelof mfecE;_zr(k@f)\(k)) d(r)]es not v:;l_r)_/t betlweenth correlated to the download rate. This yields a connectivity
connbec |v:cty fc atssdes. q us O(; (;:ac _codnnelc :wg tt:has§ i orrelated transmission scheme with a probability of
number ofintected nodes are determined solely by the initia (k) =k, which needs to be taken into account via the
conditions. Moreover for approximately homogeneous initial

conditions we get, =1 for everyk and®=1, which renders methodology we have set out above.
k™ -5 R . . . .
Eq. (12) to the knownSISmodel on random networks For scale-free networks, when the infection probability is

not k dependent, it has been proved that a connectivity de-
i =N =1l - | (12) peno!ent_ vaccina_tion policy is th_e _on_ly strategy for disease
k Wk T eradication. For implementation it is imperative that the so-
A simple stability analysis shows that the model s\ cial connectivity pattern of each individual is determined
an infection threshold at.=1. Hence this alternative analy- prior to inoculation. This is usually highly impractical espe-
sis shows the presence of an infection threshold regardless efally in cases of unexpected epidemic outbreéles, bio-
the network’s connectivity distributiorisee Fig. 1 where terrorism, computer virusgsOn the other hand, if based on
e=1). detailed knowledge of the infection, a scaling effect is noted
(3) We now return to the general case given by Bd). and a threshold emerges, random vaccination might prove
It follows that a necessary and sufficient condition for thesufficiently efficient.
existence of a threshold on an infinite network is the conver- The threshold phenomenon described here, which stems
gence of the surix, A(K)T(k)k?p. An equivalent mathemati- from alternative transmission schemes, demonstrates that

cal condition, but a weaker one from an epidemiologicalepidemic propagation depends equally on the infection
point of view, would be that the summation tail on Scheme as well as the network structure. Proper formulation

[k,oo)approaches zero for large enouAghThus for threshold of optimal vaccination pampaigns requires taking both of
emergence it is imperative thatk) T(k)p, <k ®* for every these important factors into account.
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